Natural Mordenite Catalyst Used on the Ammoniation of Methanol

Li Qiu MAO¹, Tong Lai ZHANG¹, Chang Gen FENG¹, Qing Ze JIAO², Da Zhen JIANG²

¹Department of mechano-electronic Engineering, Beijing Institute of Technology, Beijing 100081 ²Department of Chemistry, Jilin University, Changchun 130023

Abstract: The catalytic properties of natural mordenite as acidic catalysts were investigated using the ammoniation of methanol.

Keywords: Ammoniation of methanol, natural mordenite, catalytic activity.

Silicon-magnesium catalyst, aluminum phosphate, ZSM, synthetical mordenite exchanged with alkaline-earth metals ion and acidic oxide, their catalytic properties in the ammoniation of methanol have been reported¹⁻⁵. However, so far the ammoniation of methanol catalyzed by natural mordenite has not been reported. In the present work, we report the characterization and catalytic properties of natural mordenite catalysts.

 NH_3 -TPD was used to measure the acidic properties of these zeolites. The amounts of ammonia desorbed from these samples, the maximum and the minimum temperatures are summarized in **Table 1**. There are two desorption peaks for all samples within a temperature range of 383-723 K. Increasing the Si/Al ratio from 5.53 to 16.31 (corresponding to catalysts M-0 and M-7) will obviously decrease in NH_3 uptake. The maximum temperatures of NH_3 desorption on M-4 and M-7 samples are the same as that of HM. These results show that natural mordenite after dealumination has strong acidic properties.

Table 1 results of NH₃-TPD and ammoniation of methanol

Catalyst	Si/Al	NH ₃ -TPD				CH ₃ OH	S/%		
DME		T _{max} ^a	$T_{min}^{\ a}$	NH3 uptal	ke ^b	conv/%	MMA	DMA	TMA
M-0 ^c	5.53	685	588	1.14	95.5	87.2	11.7	0.9	0.2
M-2	11.48	692	590	0.86	71.4	86.1	12.3	1.0	0.6
M-4	14.42	721	611	0.53	32.1	83.2	13.6	2.6	0.7
M-7	16.31	721	617	0.47	30.9	77.0	17.4	5.6	1.0
HM	5.56	723	515	1.84	96.2	72.2	19.2	5.2	3.4
γ -Al ₂ O ₃	0.00	668	582	0.94	75.4	68.8	13.7	7.8	9.8

Condition: 673 K, NH₃/CH₃OH (mol) = 3:1, Catalyst: 0.96 g, 40-60 mesh, Space velocity: 0.59 h^{-1} . ^aT_{max} and T_{min} are the maximum and minimum temperature (K) observed during the TPD experiments. ^bAmmonia uptake is given in mmol of ammonia per gram of catalyst. ^cMordenite content in the mineral is 92.2%.

Li Qiu MAO et al.

In the ammoniation of methanol, HM has slightly higher activity and selectivity for DMA than M-0, due to it has a higher NH_3 uptake. The catalytic activity of natural mordenite catalysts decreases with a decrease of NH₃ uptake.

The reaction results in different NH₃/CH₃OH ratio are shown in Table 2. The catalytic activity of M-0 (raw mine) and selectivity of MMA increase with an increase in ratio of NH₃/CH₃OH, and the selectivity of DMA and TMA decreases with an increase of it. 1:1 is the best ratio of NH₃/CH₃OH.

Table 2 effect of ratio of NH₃/CH₃OH on the catalytic properties

NH ₃ /CH ₃ OH	CH ₃ OH	S/%					
(mol)	conv/%	MMA	DMA	TMA	DME		
5:1	100.0	87.0	10.2	0.3	2.5		
4:1	99.2	80.7	14.5	1.1	3.7		
3:1	96.9	76.1	19.9	3.0	1.0		
2:1	95.6	74.2	20.4	4.2	1.2		
1:1	90.9	55.3	34.4	9.8	0.5		

Condition: 673 K, Space Velocity: 0.37 h⁻¹, Catalyst: M-0, 1.5 g, 40-60 mesh.

Experimental

NH₃-TPD was carried out from 373 to 723 K with a heating rate β of 8 K min⁻¹ and with N₂ (30 ml min⁻¹) as carrier gas. The NH₃ uptake was determined using TCD by comparing with the integrated area of a known volume of NH₃.

The ammoniation of methanol was performed on atmospheric pressure in a fixed-bed reactor. The reaction products were analysed by GC on a 2 m stainless column with a TCD.

Acknowledgments

We thank the financial support by the Natural Sciences Foundation of Jilin Province (97JJY2058).

References and notes

- H. Stach, H. G. Jersohewitz, U. Lohse et al., J. Phys. Chem., 1992, 96, 3473. 1.
- M. R. Basila, T. P. Kantner, J. Phys. Chem., **1966**, 70, 5. K. R. Wu, X. Z. Yao, J. Petrochemistry (Chinese), **1987**, 16(1), 7. 2. 3.
- 4.
- 5.
- J. Wang, Y. Z. Zhang, J. Fine Petrochemistry (Chinese), **1993**, 5, 23. M. Isao, Y. Akinori, F. Hiroshi, *et al.*, J. Catal., **1983**, 82, 313. MMA is monomethylamine; DMA is dimethylamine; TMA is trimethylamine; DME is 6. dimethyl ether.

Received 16 October, 2000